Gelfand-shilov Smoothing Properties of the Radially Symmetric Spatially Homogeneous Boltzmann Equation without Angular Cutoff

نویسنده

  • N. LERNER
چکیده

We prove that the Cauchy problem associated to the radially symmetric spatially homogeneous non-cutoff Boltzmann equation with Maxwellian molecules enjoys the same Gelfand-Shilov regularizing effect as the Cauchy problem defined by the evolution equation associated to a fractional harmonic oscillator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Remark on the Ultra-analytic Smoothing Properties of the Spatially Homogeneous Landau Equation

We consider the non-linear spatially homogeneous Landau equation with Maxwellian molecules in a close-to-equilibrium framework and show that the Cauchy problem for the fluctuation around the Maxwellian equilibrium distribution enjoys a Gelfand-Shilov regularizing effect in the class S 1/2 1/2(R ), implying the ultra-analyticity of both the fluctuation and its Fourier transform, for any positive...

متن کامل

The Gevrey Hypoellipticity for Linear and Non-linear Fokker-planck Equations

Recently, a lot of progress has been made on the study for the spatially homogeneous Boltzmann equation without angular cutoff, cf. [2, 3, 8, 22] and references therein, which shows that the singularity of collision cross-section yields some gain of regularity in the Sobolev space frame on weak solutions for Cauchy problem. That means, this gives the C regularity of weak solution for the spatia...

متن کامل

Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff

For regularized hard potentials cross sections, the solution of the spatially homogeneous Boltzmann equation without angular cutoff lies in Schwartz’s space S(RN ). The proof is presented in full detail for the two-dimensional case, and for a moderate singularity of the cross section. Then we present those parts of the proof for the general case, where the dimension, or the strength of the sing...

متن کامل

Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions

Abstract. In this paper, we prove some a priori stability estimates (in weighted Sobolev spaces) for the spatially homogeneous Boltzmann equation without angular cutoff (covering every physical collision kernels). These estimates are conditioned to some regularity estimates on the solutions, and therefore reduce the stability and uniqueness issue to the one of proving suitable regularity bounds...

متن کامل

On Measure Solutions of the Boltzmann Equation, part I: Moment Production and Stability Estimates

The spatially homogeneous Boltzmann equation with hard potentials is considered for measure valued initial data having finite mass and energy. We prove the existence of weak measure solutions, with and without angular cutoff on the collision kernel; the proof in particular makes use of an approximation argument based on the Mehler transform. Moment production estimates in the usual form and in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012